Asymptotic integration of second-order linear differential equations
نویسندگان
چکیده
منابع مشابه
On the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملAsymptotic stability and asymptotic solutions of second-order differential equations
We improve, simplify, and extend on quasi-linear case some results on asymptotical stability of ordinary second-order differential equations with complex-valued coefficients obtained in our previous paper [G.R. Hovhannisyan, Asymptotic stability for second-order differential equations with complex coefficients, Electron. J. Differential Equations 2004 (85) (2004) 1–20]. To prove asymptotic stab...
متن کاملApproximately $n$-order linear differential equations
We prove the generalized Hyers--Ulam stability of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.
متن کاملNON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this article we have considered a non-standard finite difference method for the solution of second order Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1985
ISSN: 0022-247X
DOI: 10.1016/0022-247x(85)90224-0